188. Relations between Internuclear Distance, Force Constant, and Energy of Dissociation for Carbon-to-Carbon Linkages.

By JOHN JACOB FOX and ALBERT EDWARD MARTIN.

Combining a relation $D = k_e r_e^2/mn$, derived from a general potential function given by Sutherland, with $k_e r_e^5 = \text{const.}$, it is shown that $Dr_e^3 = \text{const.}$ for carbon-to-carbon linkages. When the ratio U/D is plotted against r/r_e a form of curve is obtained which applies to all such linkages.

IN a recent paper (J., 1938, 2106) we gave an outline of the relation between r_{e} , the internuclear distance, k_{e} , the force constant, and D, the energy of dissociation of a carboncarbon linkage. It is possible to extend this, since Sutherland (*Proc. Indian Acad. Sci.*, 1938, A, 8, 341) pointed out that for diatomic molecules a simple potential function of the form

where α , β , m, and n are constants, and r is the internuclear distance, leads to the important result that $D = k_e r_e^2 / mn$. He showed that the product mn did not vary much for a number of diatomic molecules; and we have applied this relation to carbon-to-carbon linkages with the following results:

Linkage	C≕C	C==C	Car.—Car.	C-C (hydrocarbons)
k. (10 ⁵ dynes/cm.)	15.6	9.8	7.6	4.4
r ₀ (obs.), A	1.204	1.33	1.40	1.555
D (kgcals./gmol.)	161	$125 \cdot 1$	105.3	71.8
$k_{\mathbf{e}}r_{\mathbf{o}}^{\mathbf{z}}/D = mn$	20.5	20.2	. 20.6	21.6

In this evaluation of mn, it is necessary to multiply D (cals.) by $4.185 \times 10^{7}/6.097 \times 10^{23}$ in order to convert it into ergs per link; mn is seen to be constant within the limits of the accuracy of the data.

Some time ago we found that, although a Morse-Clark relation, of the form $k_e r_e^6 =$ constant, gave very fair results for the C-C linkages, yet the results were even better if we used the fifth power instead of the sixth, as shown below :

Linkage	C≡C	C==C	Car.—Car.	CC
k. (10 ⁵ dynes/cm.)	15.6	9.8	7.6	4.4
r_{e} (calc. from $13 \cdot 2/k_{e}^{1/6}$), A	1.226	1.324	1.382	1.514
$r_{\rm e}$ (calc. from $20.93/k_{\rm e}^{1/5}$), A	1.208	1.326	1.395	1.556
r _e (obs.), A	1.204	1.33	1.40	1.555

For C-C linkages, therefore, we have the relations $k_{e}r_{e}^{2}/D = \text{constant}$ and $k_{e}r_{e}^{5} = \text{constant}$, and by eliminating k_{e} , $r_{e}^{3}D = \text{constant}$. This relation fits the curve connecting r_{e} and D, which we have previously given (*loc. cit.*; which see also for the origin of the data used here), and Douglas Clark has informed us in a private communication that, working along different lines, he has obtained the same result. Thus, if k_{e} only is known for a

Full curve from equation (4) (Morse type). Broken curve from equation (5).

C-C linkage, the corresponding value of D can be found by eliminating r_e between the above equations, whereupon D will be found to vary as $k_e^{\frac{3}{2}}$, and not directly as k_e , as is sometimes assumed.

Equation (1) can be put in the form

and from (3)

and this may be compared with the Morse potential function

where $x = r - r_e$, and *a* is a constant for *each* linkage. If *x* is small compared with r_e , we can expand (2) and (3), and neglecting powers of *x* higher than x^2 , we have from (2)

$$U = D [-1 + mnx^2/2r_e^2]$$

 $U = D [-1 + a^2x^2]$

These are Hooke's-law potential functions and are identical provided that $a^2 =$

 $mn/2r_e^2$, and since we have seen that for carbon-to-carbon linkages mn is constant, with mean value 20.7, it follows that $a = 3.22/r_e$. The Morse function can then be written

If now U/D is plotted against r/r_e a type of Morse curve is obtained which applies to all carbon-to-carbon linkages. The relation $a^2 = mn/2r_e^2$ ensures that both potential functions (2) and (3) are the same in the *immediate* neighbourhood of the equilibrium position $(r = r_e)$, but agreement elsewhere can only be approximate, and depends on the values chosen for m and n (mn being fixed). We find that, to obtain the best agreement, m and n must approach equality, and the following calculations are made on this basis:

Put $m - n = \delta$, then from (2) we have

$$\frac{U}{\overline{D}} = \frac{n}{\delta} \left(\frac{r_{\rm e}}{r} \right)^m \left[1 - \frac{m}{n} \left(\frac{r}{r_{\rm e}} \right)^{\delta} \right]$$

and on expansion we have

$$\left(\frac{r}{r_{\rm e}}\right)^{\delta} = 1 + \delta \ln \frac{r}{r_{\rm e}} + \frac{\delta^2}{2!} \left(\ln \frac{r}{r_{\rm e}}\right)^2 + \dots$$

Since δ is here small compared with unity,

$$\begin{split} U_{\overline{D}} &= \frac{n}{\delta} \left(\frac{r_{\rm e}}{r} \right)^m \left[1 - \left(1 + \frac{\delta}{n} \right) \left(1 + \delta \ln \frac{r}{r_{\rm e}} \right) \right] \\ &= -\frac{n}{\delta} \left(\frac{r_{\rm e}}{r} \right)^m \left[\frac{\delta}{n} + \delta \ln \frac{r}{r_{\rm e}} \right] \\ &= \left(\frac{r_{\rm e}}{r} \right)^m \left[m \ln \frac{r_{\rm e}}{r} - 1 \right] \end{split}$$

for m is very close to n.

For carbon-to-carbon linkages mn = 20.7, so that this potential function may be written

The figure shows the comparison between the curve plotted from this function and a Morse-type curve (equation 4).

[Received, March 31st, 1939.]