188. Relations between Internuclear Distance, Force Constant, and Energy of Dissociation for Carbon-to-Carbon Linkages.

By John Jacob Fox and Albert Edward Martin.
Combining a relation $D=k_{\mathrm{e}} r_{\mathrm{e}} / 2 / m n$, derived from a general potential function given by Sutherland, with $k_{\mathrm{e}} \boldsymbol{\gamma}_{\mathrm{e}}{ }^{5}=$ const., it is shown that $D r_{\mathrm{e}}{ }^{3}=$ const. for carbon-to-carbon linkages. When the ratio U / D is plotted against r / r_{e} a form of curve is obtained which applies to all such linkages.

In a recent paper ($\mathrm{J} ., 1938,2106$) we gave an outline of the relation between r_{e}, the internuclear distance, k_{e}, the force constant, and D, the energy of dissociation of a carboncarbon linkage. It is possible to extend this, since Sutherland (Proc. Indian Acad. Sci., $1938, A, 8,341$) pointed out that for diatomic molecules a simple potential function of the form

$$
\begin{equation*}
U=\alpha / r^{m}-\beta / r^{n} \tag{1}
\end{equation*}
$$

where α, β, m, and n are constants, and r is the internuclear distance, leads to the important result that $D=k_{\mathrm{e}} r_{\mathrm{e}}{ }^{2} / m n$. He showed that the product $m n$ did not vary much for a number of diatomic molecules; and we have applied this relation to carbon-to-carbon linkages with the following results:

Linkage	$\mathrm{C} \equiv \mathrm{C}$	$\mathrm{C}=\mathrm{C}$	$\mathrm{C}_{\text {ar }}-\mathrm{C}_{\text {ar }}$.	C-C (hydrocarbons)
$k_{\text {e }}$ (10^{5} dynes/cm.)	$15 \cdot 6$	$9 \cdot 8$	$7 \cdot 6$	$4 \cdot 4$
$\boldsymbol{r}_{\text {o }}$ (obs.), A.	1.204	1.33	$1 \cdot 40$	1.555
D (kg.-cals./g.-mol.)	161	$125 \cdot 1$	$105 \cdot 3$	71.8
$k_{\mathrm{e}} r_{\mathrm{e}}{ }^{2} \mathrm{D}=m n \ldots \ldots$.	20.5	$20 \cdot 2$	$20 \cdot 6$	21.6

In this evaluation of $m n$, it is necessary to multiply D (cals.) by $4 \cdot 185 \times$ $10^{7} / 6 \cdot 097 \times 10^{23}$ in order to convert it into ergs per link; $m n$ is seen to be constant within the limits of the accuracy of the data.

Some time ago we found that, although a Morse-Clark relation, of the form $k_{\mathrm{e}} r_{\mathrm{e}}{ }^{6}=$ constant, gave very fair results for the C-C linkages, yet the results were even better if we used the fifth power instead of the sixth, as shown below :

Linkage	$\mathrm{C}=\mathrm{C}$	$\mathrm{C}=\mathrm{C}$	$\mathrm{Carar}^{\text {- }} \mathrm{C}_{\text {ar }}$	C-C
$k_{\text {e }}$ (10^{5} dynes/cm.)	$15 \cdot 6$	$9 \cdot 8$	$7 \cdot 6$	$4 \cdot 4$
r_{0} (calc. from $13 \cdot 2 / k_{0}{ }^{1 / 6}$), A	1.226	1.324	$1 \cdot 382$	1.514
r_{e} (calc. from $20.93 / k^{1 / 6}$),	1.208	$1 \cdot 326$	$1 \cdot 395$	1.556
r_{e} (obs.), A.	$1 \cdot 204$	$1 \cdot 33$	$1 \cdot 40$	1.555

For C-C linkages, therefore, we have the relations $k_{\mathrm{e}} r_{\mathrm{e}}^{2} / D=$ constant and $k_{\mathrm{e}} r_{\mathrm{e}}^{5}=$ constant, and by eliminating $k_{\mathrm{e}}, r_{\mathrm{e}}{ }^{3} D=$ constant. This relation fits the curve connecting r_{e} and D, which we have previously given (loc. cit.; which see also for the origin of the data used here), and Douglas Clark has informed us in a private communication that, working along different lines, he has obtained the same result. Thus, if k_{e} only is known for a

Full curve from equation (4) (Morse type). Broken curve from equation (5).

C-C linkage, the corresponding value of D can be found by eliminating r_{e} between the
 sometimes assumed.

Equation (1) can be put in the form

$$
\begin{equation*}
U=D\left(\frac{n}{m-n}\right)\left[\left(\frac{r_{\mathrm{e}}}{r}\right)^{m}-\frac{m}{n}\left(\frac{r_{\mathrm{e}}}{r}\right)^{n}\right] \tag{2}
\end{equation*}
$$

and this may be compared with the Morse potential function

$$
\begin{equation*}
U=D\left[\mathrm{e}^{-2 a x}-2 \mathrm{e}^{-a x}\right] \tag{3}
\end{equation*}
$$

where $x=r-r_{\mathrm{e}}$, and a is a constant for each linkage. If x is small compared with r_{e}, we can expand (2) and (3), and neglecting powers of x higher than x^{2}, we have from (2)

$$
U=D\left[-1+m n x^{2} / 2 r_{\mathrm{e}}^{2}\right]
$$

and from (3)

$$
U=D\left[-1+a^{2} x^{2}\right]
$$

These are Hooke's-law potential functions and are identical provided that $a^{2}=$
$m n / 2 r_{\mathrm{e}}{ }^{2}$, and since we have seen that for carbon-to-carbon linkages $m n$ is constant, with mean value 20.7 , it follows that $a=3.22 / r_{\mathrm{e}}$. The Morse function can then be written

$$
\begin{equation*}
U / D=\left[\mathrm{e}^{-6 \cdot 44\left(\gamma / \mathrm{r}_{\mathrm{e}}-1\right)}-2 \mathrm{e}^{-3 \cdot 22\left(\gamma / r_{e}-1\right)}\right] \tag{4}
\end{equation*}
$$

If now U / D is plotted against r / r_{e} a type of Morse curve is obtained which applies to all carbon-to-carbon linkages. The relation $a^{2}=m n / 2 r_{\mathrm{e}}{ }^{2}$ ensures that both potential functions (2) and (3) are the same in the immediate neighbourhood of the equilibrium position ($r=r_{\mathrm{e}}$), but agreement elsewhere can only be approximate, and depends on the values chosen for m and n ($m n$ being fixed). We find that, to obtain the best agreement, m and n must approach equality, and the following calculations are made on this basis:

Put $m-n=\delta$, then from (2) we have

$$
\frac{U}{D}=\frac{n}{\delta}\left(\frac{r_{\mathrm{e}}}{r}\right)^{m}\left[1-\frac{m}{n}\left(\frac{r}{r_{\mathrm{e}}}\right)^{\delta}\right]
$$

and on expansion we have

$$
\left(\frac{r}{r_{\mathrm{e}}}\right)^{\delta}=1+\delta \ln \frac{r}{r_{\mathrm{e}}}+\frac{\delta^{2}}{2!}\left(\ln \frac{r}{r_{\mathrm{e}}}\right)^{2}+
$$

Since δ is here small compared with unity,

$$
\begin{aligned}
\frac{U}{D} & =\frac{n}{\delta}\left(\frac{r_{\mathrm{e}}}{r}\right)^{m}\left[1-\left(1+\frac{\delta}{n}\right)\left(1+\delta \ln \frac{r}{r_{\mathrm{e}}}\right)\right] \\
& =-\frac{n}{\delta}\left(\frac{r_{\mathrm{e}}}{r}\right)^{m}\left[\frac{\delta}{n}+\delta \ln \frac{r}{r_{\mathrm{e}}}\right] \\
& =\left(\frac{r_{\mathrm{e}}}{r}\right)^{m}\left[m \ln \frac{r_{\mathrm{e}}}{r}-1\right]
\end{aligned}
$$

for m is very close to n.
For carbon-to-carbon linkages $m n=20 \cdot 7$, so that this potential function may be written

$$
\begin{equation*}
\frac{U}{D}=\left(\frac{r_{\mathrm{e}}}{r}\right)^{4.55}\left[4.55 \ln \frac{r_{\mathrm{e}}}{r}-1\right] \tag{5}
\end{equation*}
$$

The figure shows the comparison between the curve plotted from this function and a Morse-type curve (equation 4).

